Yanik Lab Receives $3.7M NIH Grant for Global Health

With a five-year, $3.7 million grant from the National Institutes of Health, he and his collaborators are poised to complete the development and validation of a prototype and begin testing it in the field for detection of dengue fever, yellow fever, and Zika virus infections.

“We’re confident in being able to do this and get it into the field for testing,” said Yanik, an assistant professor of electrical and computer engineering in the Baskin School of Engineering at UC Santa Cruz. “It’s pretty revolutionary because this is a very simple tool, and yet it is also very sensitive.”

Yanik’s collaborators include infectious disease specialists at Stanford University School of Medicine and at St. George’s University in Grenada. Benjamin Pinsky is medical director of the Clinical Virology Laboratory for Stanford Health Care and has ongoing research projects in Grenada; Desiree LaBeaud is a professor of pediatric infectious diseases at Stanford who has been studying insect-borne viral diseases in Kenya and Grenada; and Calum Macpherson is an epidemiologist and dean of graduate studies at St. George’s University and director of the Windward Islands Research and Education Foundation (WINDREF).

Full Article: https://news.ucsc.edu/2020/12/virus-diagnostics.html, UC Santa Cruz News Center, December 2020,

Read More
YanikLAB
Our Recent Paper is among the TOP 100 Downloaded Articles

Optical chromatography is a powerful optofluidic technique enabling label-free fractionation of microscopic bioparticles from heterogenous mixtures. However, sophisticated instrumentation requirements for precise alignment of optical scattering and fluidic drag forces is a fundamental shortcoming of this technique. Here, we introduce a subwavelength thick (<200 nm) Optofluidic PlasmonIC (OPtIC) microlens that effortlessly achieves objective-free focusing and self-alignment of opposing optical scattering and fluidic drag forces for selective separation of exosome size bioparticles. Our optofluidic microlens provides a self-collimating mechanism for particle trajectories with a spatial dispersion that is inherently minimized by the optical gradient and radial fluidic drag forces working together to align the particles along the optical axis.

Full Article: Plasmofluidic Microlenses for Label-Free Optical Sorting of Exosomes, Scientific Reports,  June 2019,

Read More
YanikLAB
Plasmofluidic Microlenses for Exosome Sorting - Published in Scientific Reports

Optical chromatography is a powerful optofluidic technique enabling label-free fractionation of microscopic bioparticles from heterogenous mixtures. However, sophisticated instrumentation requirements for precise alignment of optical scattering and fluidic drag forces is a fundamental shortcoming of this technique. Here, we introduce a subwavelength thick (<200 nm) Optofluidic PlasmonIC (OPtIC) microlens that effortlessly achieves objective-free focusing and self-alignment of opposing optical scattering and fluidic drag forces for selective separation of exosome size bioparticles. Our optofluidic microlens provides a self-collimating mechanism for particle trajectories with a spatial dispersion that is inherently minimized by the optical gradient and radial fluidic drag forces working together to align the particles along the optical axis.

Full Article: Plasmofluidic Microlenses for Label-Free Optical Sorting of Exosomes, Scientific Reports,  June 2019,

Read More
YanikLAB
Yanik Receives National Science Foundation CAREER Award

by KARYN SKEMP

Like electrons and photons, a phonon is a quasiparticle, a particle derived from collective vibrations of atoms in solids. The ability to control electrons and photons led to major breakthroughs, including inventions such as the transistor, computer, camera, laser, and fiber optics. Yanik and others believe that the ability to control and manipulate phonons in artificially created phononic materials could lead to similar revolutionary breakthroughs. 

“The idea behind my research is to use phononic metamaterials to push the boundaries of today’s acousto-microfluidic technologies beyond conventional standing-wave devices,” said Yanik, who laid the theoretical and experimental framework for the proposed research through a prior NSF award and has demonstrated practical uses of phononic metamaterials in microfluidics for the first time…

Full ArticleBSOE News,  January 24 2019, 

Read More
YanikLAB
Undergraduate Research Team Wins Dean’s Award

Congratulations to Ali Aljuraidan (Crown), Aditya Gumparthi (Crown) , Eduardo Hirata (Crown) !! for winning Dean’s Undergraduate Research Award!!

Project Description: Current diagnostic systems require trained personnel, expensive equipment, and a large area, making them infeasible. Our project solves the multi-level problem through automation and miniaturization of components responsible of functionalizing a microfluidic chip. This is done by providing a unified platform capable of functionalization and surface acoustic wave (SAW) particle separation. The platform is capable of completely autonomous operation and requires very little training to operate attributed by its user-friendly interface.

More2018 Winner: Automatized Surface Functionalization for Diagnostic System, June 2018, 

Read More
YanikLAB
Optical Cell Sorting - The Scientist

by RACHEL BERKOWITZ

A new wave of label-free methods is offering researchers ways to identify subgroups of cells in live cultures and to home in on the most pertinent populations. Still, many label-free methods rely on only one cell characteristic or are hobbled by their low throughput. To overcome these limitations, researchers are devising tools that rapidly pump high volumes of cells through tiny microfluidic channels etched into a chip and combine the novel use of optics with new image-processing tools.

Full ArticleOptical Cell SortingThe Scientist, December 2017, 

Read More
YanikLAB
Ebola Diagnostics Work Highlighted in Science (AAAS)

by MARK I. STOCKMAN

Measuring minute amounts of chemical and biological objects in the environment and in living organisms is one of the most common and important tasks in chemistry, biology, medicine, environmental monitoring, transportation, homeland security, and defense. Although the existing methods of sensing and detection are numerous and powerful, they are not without shortcomings: insufficient sensitivity; long detection times; necessity for enzymatic, fluorescent, or radioactive labeling; high costs, and so on. Optical spectroscopic methods have the advantage of being fast, noncontact, and relatively inexpensive, but they are not necessarily sensitive enough.

Full ArticleNanoplasmonic sensing and detectionScience, Vol. 348, pp. 287-288, 

Read More
YanikLAB
Yanik Lab - Novel Biosensor Technology for Rapid Detection of Ebola Virus

by TIM STEPHENS

In 2010, Ahmet Ali Yanik published his first paper on the rapid detection of Ebola virus using new biosensor technology he and colleagues at Boston University had invented. But he found there was little interest at the time in developing the technology further.

"People told me that there wasn't any profit in it because this disease only affects people in the developing world," Yanik said.

Read More
YanikLAB